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Abstract. In the present paper an attempt is made to improve the series expan- 
sion method for computing the incomplete integrals F(0, k) and E(0, k). Therefore 
the following three pairs of series covering the region - _ ? k_ 1, 0 <_ 4 < ir/2 are 
used: series obtained by a straightforward binomial expansion of the integrands, 
series valid for k'2 tan2 2 < 1, and new series which converge for 4 > r/4 and for all 
values of k. Terms of the last two pairs of series can be generated by means of the 
same recurrence relations, so that the coding of the whole is not longer than that for 
similar methods using only two pairs of series. Any degree of accuracy can be ob- 
tained. In general the method is a little bit slower than Bulirsch' calculation pro- 
cedures which are based on the Landen transformation, but it works more quickly 
in case of large values of k2 and/or p. The new series introduced are also represented 
in trigonometric form, and the double passage to the limit k2 -* 1, 4 -* r/2 is dis- 
cussed. U 

1. Introduction. The incomplete elliptic integrals of the first and second kinds 
are defined by 

(1.1) ~ F(0) = (1-k2sin 2)-1'2do 

(1.2) E(, k) = f (1 - k2 sin2 0) 12ddO 

respectively. We assume that the modulus k and the amplitude 4 take values in the 
ranges 0 < k 2 < 1, 0 < 4 < r/2. The comodulus k' is given by k' = (1 k k2)1"2. If 
P = 1, (1.1) and (1.2) reduce to the well-known formulas 

(1.3) F(c, ? 1) = log tan (r/4 + 4/2) = log ((1 + sin 0)/cos 4)), 

(1.4) E(4, ?1 I) = sin 4 . 

For the numerical calculation of these integrals two methods are in common use. 
The first is based on the well-known Landen transformation and seems to have been 
used first by A. M. Legendre [1] for the construction of tables. The second is the 
series expansion method. A binomial expansion of the integrands in (1.1) and (1.2) 
provides series which are suitable for machine computation if k2 sin2 4 is sufficiently 
small (see Section 2). We will call them the classical series. If 2 sin2 2 is large, other 
series must be used. E. L. Kaplan [2] derived series valid when 2 and sin2 4 are both 
close to 1; they are in powers of k'2/k2 and served for interpolation in tables of in- 
complete elliptic integrals. A. R. DiDonato and A. V. Hershey [3] rejected these 

Received July 12, 1968. 

61 



62 H. VAN DE VEL 

series as tools for numerical calculation with the argument that the rate of con- 
vergence deteriorates rapidly as k'2/k2 approaches unity. Instead both authors 
derived new series; though very complicated, they can be coded by means of rela- 
tively simple recurrence relationships. A combination of the classical series, applied 
when k2 sin2 4-< 1 and these new series, applied in the complementary region, 
turned out to be a more accurate and a faster computation method for F(Q, k) and 
E(O, k) than Legendre's method. Later on G. E. Lee-Whiting [4] showed that the 
rate of convergence of Kaplan's series is independent of the value of k'2/k2; it was 
found that slightly modified forms of these series are completely satisfactory for 
numerical calculations in the region k2 sin2 4) > '. Moreover they are much simpler 
than the corresponding series of [3]. However, for the computation of the complete 
elliptic integrals K = F(r/2, k) and E = E(ir/2, k) appearing in Kaplan's series, 
C. Hastings' [5] method of polynomial approximation is suggested, which has a 
fixed limit of accuracy. In both references [3] and [4] other series for F(c, k) and 
E(O, k) are discussed, which have been given by B. Radon [6]; these series are ob- 
tained from differential equations having F(Q, k) and E(Q, k) as their solutions. 
They are much more complicated than the series already mentioned and their 
regions of practical convergence do not cover the whole of the region k2 sin2 4 > I. 

Returning to the method based on the Landen transformation, D. J. Hofsommer 
and R. P. van de Riet [7] have combined this method with Gauss' theory of the 
arithmetico-geometric means, with the result that more compact and faster pro- 
grams for the computation of F(O, k) and E(O, k) were obtained, compared with 
those for the methods of [3] and [4]. Both authors apply the Landen transformation 
four times in the downward direction if k' > 0.3 and three times in the upward 
direction if k' < 0.3; the results always have a relative error of the order 10-12. In 
its turn, Hofsommer and van de Riet's method has been improved (and extended 
to the cases of more general elliptic integrals) by R. Bulirsch [8]; in the calculation 
procedures devised by this author the number of iterative cycles is not predeter- 
mined so that any degree of accuracy can be obtained. These procedures are shorter 
than the corresponding ones of [7] and faster when k' > 10-2. 

The series expansion method also has the advantage that a freely chosen accu- 
racy of results can be imposed. The main purpose of the present paper is to establish 
an improved version of this method (Section 2). It consists essentially in a- combina- 
tion of three series for each of F(4), k) and E(O, k) instead of two: the classical series, 
series valid for '2 tan2 4 < 1, and new series valid for 4 > r/4. The relevant formulas 
are (2.1) and (2.2), (2.4) and (2.6), (2.10) and (2.13), respectively. Terms of the 
latter two pairs of series can be generated by the same recurrence relations (2.9), 
with the result that the coding of the whole is not significantly longer than that for 
the method of [4], while the average computation time is shorter. The regions of 
application of all series are discussed. The idea of using three pairs of series dates 
back to S. C. van Veen [9], who obtained series expansions for F(4), k) and E(4, k) 
after having first applied the Landen transformation a number of times. His for- 
mulas, however, are very complicated and their practical use is restricted to the 
computation of the leading terms. 

The F(4), k) and E(Q, k) series, as represented in Section 2, can be put in trigo- 
nometric form. This can be done in several ways, but preference is given to the 
representation as appearing in [10]. In Section 3, the list of formulas for F(4, k) and 



ON THE SERIES EXPANSION METHOD 63 

E(0, k) of this reference is corrected for the E(0, k) series valid for k'2 tan2 4 < 1, 

and complemented by our new series, for which it is shown that they can be brought 
into trigonometric forms similar to the other ones. 

2. Numerical Calculation of F(0, k) and E(0, k). A binomial expansion of the 
integrands in (1.1) and (1.2) yields the classical series 

(2.1) F( ,k) = - 2 )k2nIln 

(2.2) E(4, k) = - E( )2 1In, 

where In stands for f sin2n OdO. Using the recurrence relation 

2n - 1 sin 2n14'Ocos4o 
(2.3) In - In- n n >1, 

these series can easily be programmed, as described in [3]. It follows from Schwarz 
inequality that In+2/In+l > In+,/In. Since In+, = sin2 n. In, where 0 < {n < 4, we 

have S;+, > (n and therefore limn , = 4). Consequently, the limiting value of the 
ratio of adjacent terms in the series (2.1) and (2.2) is k2 sin2 4; hence these series are 
at least as convergent as a geometric series with common ratio k2 sin2 4). 

Now we derive two other pairs of series, for which the rate of convergence can 
be determined. The first pair is valid for k'2 tan2 4 < 1 and can be obtained by writ- 
ing the integrands in (1.1) and (1.2) in the forms [cos 0(1 + k'2 tan2 0)l/2]-l and 
cos 0(1 + k'2 tan2 0)1/2, respectively. Applying a binomial expansion to the first 
integrand we obtain 

(2.4) F(01 k) E = ( 2 )k 2Inj 

where Jn stands for f sin2n 0/cos2n+1 OdO. Between the integrals Jn the following 
recurrence relation holds: 

(2.5) J 1 sin2n'4 2n - 1 (2.5) Jn 
2n cos4 - 2n 

in- 
n?1= 

A similar formula for E(4, k) can be obtained by first performing a partial integra- 
tion on the second integrand; then applying a binomial expansion yields a series in 
terms of Jn+1; these terms can be reduced to Jn by using the relation (2.5). The 
result is 

(2.6) [ 1 + (1 + k 2tan 2))12l 

+ 0(- 2n + 1 /,2n+2J 

In the same way as done for the classical series we can show that the limiting value 
of the ratio of adjacent terms in the series (2.4) and (2.6) is -k'2 tan2 4; hence these 
series are at least as convergent as a geometric series with common ratio -k'2 tan2 4. 

They can be computed as follows. We set 



64 H. VAN DE VEL 

q = k'2 tan2 , 

An = 2) with Ao=1, 

Bn = q cosec4X, with Bo = cosec4), 

Cn = k'2 Jn, with Co = log ((1 + sin 4)/cos 4)) 

then we have 
00 

(2.7) F(cp, k) = CO + E AXn n=1 

(2.8) E(), k) = sin k-21 + (k q)121 + 2C0 

+ 2n + 1 2C +l: ~2n + 2'n n 

terms in these series can, by virtue of (2.5), be generated with the recurrence rela- 

tions 

(2.9) An =- 
- An_1; Bn = qBn-1; Cn = Bn - 2n 

- 
k-2Cn_l. 

2n 2n 2n 

Next we derive series for F(O, k) and E(O, k) which are valid for large values 

of 4. As in [2], [3], [4] and [9], we start from the expressions K - F(O, k) and E 
- E(O, k). They can be written in the forms 

7r /2-0 7r/2-0 

f [cos 0(k'2 + tan2 O)12I-1dO and f cos O(k'2 + tan2 O)12dO, 

respectively, where k' must be >0 for the case of F(O, k). If tan-1 k' > 7r/2-4, 

thus k' tan 4 > 1 and 4 > 7r/4, the substitution tan 0 = k' tan i/ and a binomial ex- 

pansion (which is allowed) yields 

(2.10) K-F(b, k) = 2 k 2J sin - dO, 

(2.11) E - E(4), k) = (-3/2 -k2n+2 f 5i1 0 dO, 
n=O \ f / oCos 2n3 0 

where 

(2.12) u = cot-' (k' tan 4)). 

If tan-1 k' < 7r/2 and hence k' tan 4 < 1, we divide the integration interval into 

[0, tan-1 k'] and [tan-1 k', 7r/2 - 4]; performing the substitution tan 0 = k' tan Af in 

the first subinterval and tan 0 = k' cot i/ in the second, and applying a binomial 

expansion (which is allowed if 4 > 7r/4), we obtain again the formulas (2.10) and 

(2.11). Hence these series are valid for 4 > 7r/4 and for all positive values of k'. 

Formula (2.11) can still be reduced by means of the recurrence relation 

* 
i2n 01 sn2n+1 

(u sin 2n 0 N 
-d0 = +1 dO 

Cos2n3 0 2n + 2 (Cos2n+2u J cos2nl+10 / 

obtaining 
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E-E(01 k) =(-sin)(1 + k' tan 2 ))"2 
(2.13) 'i~2?,~2f 

(2.13) + ,(~~~~~-2-) 2n+2L 7. I2n+2| snl dO. n=O 
n 2n + 2 0Cos 2n+'O 

Formulas (2.10) and (2.13) are believed to be new. Again we can show that the 
limiting value of the ratio of adjacent terms is -k'2 tan2 u, that is-cot2 4; hence it 
is independent of the value of k. The rate of convergence of these series is at least as 
good as that of a geometric series with common ratio- cot2 4. Setting 

q - cot2 2, 

An = _ t 2},with Ao=-l, 

Bn = (1 + k tan2 4)1/2 cot2 4, with Bo = (1 + k'2 tan2 )112, 

fu sin2n 0 1+Bo 
Cn =k n+1 - do, with Co= log 

0Cos 210 k' tan o 
we get 

(2.14) F(01,k) =K -0C+ EAnCn 
n=1 

Bo COS kf2co~)+f 2fl+lA1 2C (2.15) E(,01 k) E -( Bo s + 2 + A2n+ k'C 

and terms in the series can be generated by the recurrence relations (2.9) already 
obtained for the series (2.7) and (2.8). 

In the new series of DiDonato and Hershey, K and E are replaced by their 
appropriate series, valid for large values of lkl. (A derivation of these series can be 
found in [11].) The terms of these series are included in the series for K - F(4), k) 
and E - E(0, k). This procedure is not very well applicable for the case of the 
modified Kaplan series or for the series (2.14) and (2.15); indeed, these series con- 
verge independently of k'2/k2 and k respectively; if k2 = and 4 is large their con- 
vergence is much stronger than that of the series for K and E; when a high degree 
of accuracy is required, underflows may then be generated (if numbers are repre- 
sented in floating-point form). Therefore K and E must be calculated separately. 
As remarked in [7], this calculation can be performed very quickly with the process 
of the arithmetico-geometric means (see for example [12]) when k' > 0.3; for smaller 
values of k' the series expansions for K and E already mentioned can be used. 

From the foregoing investigations we may conclude that there are three pairs 
of series available for the computation of F(4), k) and E(4), k), of which the rates of 
convergence are determined by the quantities k2 sin2 4), -k'2 tan2 4) and -cot2 4, 
respectively. It is easy to see that in the ranges 0 < IC2 < 1.0 < 4 < r/2, always at 
least one of the absolute values of these quantities is smaller than or equal to 2. 

Hence for every pair of values (4, k) the incomplete integrals can be computed by 
means of series which are at least as convergent as a geometric series with common 
ratio ?t 2. The boundaries of the subregions wherein each couple of series can be 
applied may then be fixed by the following procedure: 

series (2.1) and (2.2) if k2 sin2 ) ? k'2 tan2 4 and I2 sin2 4 < cot2 4) 
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series (2.7) and (2.8) if k'2 tan2 4 <Ic2 k12 4) and k'2 tan2 4 < cot2 4; 
series (2.14) and (2.15) if cot2 4 < k2 sin2 4 and cot2 4 < k'2 tan2 4). 

If ko = 0, it is seen that the classical series will be applied, which lead to the result 
F(O, 0) = E(O, 0) = 4. If/k2 = 1, the series (2.7) and (2.8) will be used, which clearly 
reduce in that case to the formulas (1.3) and (1.4). The case k2 = 1 does not allow 
the use of the modified Kaplan series [4] or the procedures of R. Bulirsch [8] without 
special precautions. The calculation of the difference between K and the leading 
term in the series (2.14) does not involve a loss of significant figures, since in its 
region of application the value of this leading term never exceeds 53 percent of the 
value of K. The same is true for the difference between E and the leading terms in 
Eq. (2.15); there the value of the leading terms never exceeds 31 percent of the 
value of E. Also the first term in the right member of Eq. (2.8) cannot cause a loss 
of significant figures, since k'2/(1 + (1 + q)l/2) _ 

Fortran IV double precision routines were written for the IBM-360 computer 
which compute F(4, k) and E(4, k) as explained above within an arbitrary chosen 
relative error (the choice of this error being restricted to the minimum value 10-16, 
due to the fact that the double precision floating-point numbers are 16 decimal digits 
long) and which call subroutines for the computation of K and E. The input pa- 
rameters of these routines are: (i) sin-' k, with -1 < k < 1; this permits the compu- 
tation of k and k' as exact as possible; (ii) x = tan 4, with 0 < x2 < 1076 (for the 
choice of x as input parameter see the remarks in [4] and [8]); (iii) the desired relative 
accuracy e; the series are truncated when the absolute values of the magnitudes of 
the last terms included in both the F(4), k) and E(4, k) series are less than e times the 
appropriate partial sum (leading terms included). Computations for 4 = 1?(1)890, 
sinilk = 10(1)890 took a time which is 40 percent and 20 percent shorter than for 
the methods of [3] and [4], respectively, which were also run on this computer. The 
rate of convergence of the modified Kaplan series is determined by the quantity 
cos2 2 and hence is slightly better than that of the series (2.14) and (2.15). But the 
region of application of the former series (which has to be chosen such that 
k'2/kJ2 < 1) is considerably smaller than that of the latter. A combination of the 
classical series, the series (2.7) and (2.8), and the modified Kaplan series was also 
tried on the IBM-360 computer, but turned out to be inferior to our method from 
the standpoint of compactness and efficiency. 

An overall comparison in efficiency of our E(4, k) program with Bulirsch' 
e12(x, k', a, b)-procedure (which gives E(4, k) for a = 1 and b = ki'2) showed that the 
latter is a little bit faster. The ell(x, k')-procedure for the computation of F(4, k), 
which results from the e12-procedure by taking a = b = 1, constitutes a considerable 
simplification with the result that it is about two times faster than our F(4, k) pro- 
gram. However, results are obtained more quickly with our series expansion method 
in some cases, i.e. for large values of IkI (in [8] the Landen transformation is applied 
always in the downward direction, that is, Ikl is decreased) and/or for 4 close to r/2, 
since then our second and/or third pair of series converge very strongly. 

By way of example, numerical values of terms of the series (2.14) and (2.15) for 
4 = 85? (cot2 4 = 0.00765426625) and sin-' k = 20?, 400, 600, 800 are given in the 
tables below; the relative error E in the results for F(4, k) and E(4, k) is chosen to 
be < 10-10; numbers in the first colunm refer to the leading terms (K or E included) 
(n = 0), the first term (n = 1), etc. in both series. It is seen that for all values of k 
the same number of terms is needed to obtain the imposed accuracy. 



ON THE SERIES EXPANSION METHOD 67 

Table for F(85?, k) 

51171 k 
n\"i k 200 400 600 800 

0 1.5270563936 1.6728076300 1.9824191203 2.6687529577 
1 0.0001184657 0.0001451307 0.0002212032 0.0005995196 
2 -0. 0000004078 -0.0000004995 -0. 0000007606 -0.0000020385 
3 0.0000000019 0.0000000023 0.0000000035 0.0000000092 

F($, k) 1.5271744534 1.6729522635 1.9826395664 2.6693504480 

Table for E(850, k) 

\si-171k 200 400 600 800 

0 1.4417036319 1.3261670261 1.1672161510 1.0243504244 
1 0.0000784559 0.0000638746 0.0000414756 0.0000135583 
2 -0.0000003001 -0.0000002443 -0.0000001585 -0.0000000512 
3 0.0000000014 0.0000000012 0.0000000008 0.0000000002 

E(q, k) 1.4417817891 1.3262306576 1.1672574689 1.0243639317 

3. Trigonometric Series for F(q, k) and E(q, k). The classical series and the two 
other pairs of series discussed in the previous section can be carried out by means of 
their appropriate recurrence relations (2.3) and (2.5), respectively, providing series 
for F(q, k) and E(4, k) in trigonometric form. These transformations can be per- 
formed in several ways and, as to the first two pairs of series, we may (among others) 
refer for that purpose to [10], [13] and [14]. In the author's opinion the series men- 
tioned in [10] seem to be the most attractive ones, in particular if q and k are related 
to each other by means of functions of the same variable, say x, and one wishes to 
obtain series developments for fi(x) -F(q(x), k(x)) and f2(x) E(qs(x), k(x)) in 
powers of x. 

The classical series in [10] are given by the formulas (8.117). The series for 
F(q$, k) which is valid for k1'2 tan2 2 < 1 (formula (8.118.1)) is 

F(c,0 k) = 2 K' log 1 ? Sin 
(3. La) ~~~Cos4 3..a) -cstan (ao'- 2 a1' tan2 + 24 'tan4q .- ), 

Cos ~ 3 43-5a2 

where 

an O - m X aot = 2K'1, 

and K' = F(ir/2, k'). The corresponding formula for E(qO, k) in this reference is not 
correct. One can show that the correct formula is 

E(0, k) = 2 (K'- E') log 1 + sin + (1 + ki2 tan2 0)112 sin,0 
(3.1.b) ~~7r Cos~ 

tan,0( 2 4,4 
_tn,(bol'- - bl' tan2 + 2 

V 2 tan4 q ) Cosw 3her 
where 
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b '2 2 1 k'2m b' 2 (K'- E') 

and E' = E(7r/2, k'). If k2 -* 1 Eqs. (3.1.a) and (3.1.b) reduce to formulas (1.3) and 
(1.4). The limit 4 -> r/2 cannot be performed with these series. 

The new series (2.10) and (2.11) can be put in forms similar to (3.1). Indeed, it 
follows from Eqs. (2.4) and (2.10) that for K - F(O, k) the series expansion (3.1.a) 
holds, where 4 is replaced by u (see Eq. (2.12)). Then we find 

K-F(O,k)= 2KK'sinh1 
1 )-(1 + k'2 tan2 

qp)l12 
(3.2.a) 7r tan 4) 

X cot2 co- 
2 

cj-Cot2 + C2' cot4 - 

where 

=n_ ant = x -2 )2k 2m-2n-2 
c-k12nf+2 m-ff+l \mJ 

It also follows from Eqs. (2.6) and (2.13) that for the expression E -E(O, k) + 
k2 sin2 ,/(1 + k'2 tan2 ,0)112 the series expansion (3.1.b) holds, where 4 is replaced by 
u. We find 

E - E(,y k) = 2(K' - E') sinh-1 1 E - E(4), k (k' tan 
4) 

(3.2.b) + (1 - k2 sin2 0)1/2 cot ) - (1 + k'2 tan2 2,)1/2 

X cot2 q$ (do' - 3 d1' cot2 4 + 32 5 d2' cot4- ** 

where 

d _ bn _ 0 , - 2A 2m 1t2m-2n-2 
dn 

2n+= 
( -- k2 

k'2W m=n+l m 2m- 1 

With series (3.2.a) and (3.2.b) the double limit k2 -> 1, 4 --* r/2 can be performed. 
(The sign "lim" will denote this double limit in what follows.) It is seen that 
E - E(4), k) -> 0, while K - F(4, k) -- sinh-1 (l/k' tan 4). Hence lim [K - F(4), k)] 
exists if lim (k' tan 4)) > 0, and tends to infinity like log (2/k' tan 4) if lim (k' tan 4) 
-0. (The limiting value of k' tan 4 can be determined if it is assumed that k-k(x), 
4 = (x) and k2 -> 1, 4)- r/2 if x -* xo.) This result can also be obtained directly 
from Kaplan's series [2]. 

Series for F(4), k) and E(4), k) can be obtained from (3.2.a) and (3.2.b) by replac- 
ing K and E by their appropriate series expansions [11]. Then the leading terms in 
the expressions for F(4), k) and E(4), k) are (if k2 is close to 1) 

log 1+ 4 tan4) and 1, 
1 + (1 + k 2 tan 2 0)1,2 

respectively. If lim (k' tan 4) is finite we see that F(q5, k) tends to infinity like 
log [2/(7r/2 -)], in accordance with the behaviour of the function in (1.3) when 
4) - ir/2. If lim (k' tan 4) is infinite, lim [K - F(4), k)] = 0, and F(4), k) tends to 
infinity like log (4/k'). In all cases E(4), k) tends to 1, in accordance with Eq. (1.4) 
when 4 -* 7r/2. 
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